Follow
Lennard Kamenski
Lennard Kamenski
Unknown affiliation
Verified email at wias-berlin.de
Title
Cited by
Cited by
Year
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
W Huang, L Kamenski, J Lang
Journal of Computational Physics 229 (6), 2179–2198, 2010
662010
A geometric discretization and a simple implementation for variational mesh generation and adaptation
W Huang, L Kamenski
Journal of Computational Physics 301, 322–337, 2015
612015
Conditioning of finite element equations with arbitrary anisotropic meshes
L Kamenski, W Huang, H Xu
Mathematics of Computation 83 (289), 2187–2211, 2014
532014
On the mesh nonsingularity of the moving mesh PDE method
W Huang, L Kamenski
Mathematics of Computation 87, 1887–1911, 2018
522018
How a nonconvergent recovered Hessian works in mesh adaptation
L Kamenski, W Huang
SIAM Journal on Numerical Analysis 52 (4), 1692–1708, 2014
282014
A comparative numerical study of meshing functionals for variational mesh adaptation
W Huang, L Kamenski, RD Russell
Journal of Mathematical Study 48 (2), 168–186, 2015
212015
Why do we need Voronoi cells and Delaunay meshes? Essential properties of the Voronoi finite volume method
K Gärtner, L Kamenski
Computational Mathematics and Mathematical Physics 59 (12), 1930–1944, 2019
19*2019
Stability of explicit one-step methods for P1-finite element approximation of linear diffusion equations on anisotropic meshes
W Huang, L Kamenski, J Lang
SIAM Journal on Numerical Analysis 54 (3), 1612–1634, 2016
12*2016
Tetrahedral mesh improvement using moving mesh smoothing and lazy searching flips
F Dassi, L Kamenski, H Si
Procedia Engineering 163, 302–314, 2016
112016
Mesh smoothing: an MMPDE moving mesh approach
W Huang, L Kamenski, H Si
Research Note of the 24th International Meshing Roundtable, 2015
11*2015
Anisotropic mesh adaptation based on Hessian recovery and a posteriori error estimates
L Kamenski
TU Darmstadt, 2009
112009
Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction
F Dassi, L Kamenski, P Farrell, H Si
Computer-Aided Design 103, 2–13, 2018
102018
Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes
W Huang, L Kamenski, J Lang
Journal of Computational and Applied Mathematics 387, 112497, 2021
92021
Numerical Geometry, Grid Generation and Scientific Computing: Proceedings of NUMGRID 2018 / Voronoi 150
VA Garanzha, L Kamenski, H Si
Lecture Notes in Computational Science and Engineering, vol 131, Springer, Cham, 2019
9*2019
A study on the conditioning of finite element equations with arbitrary anisotropic meshes via a density function approach
L Kamenski, W Huang
Journal of Mathematical Study 47 (2), 151–172, 2014
72014
A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method
L Kamenski
Engineering with Computers 28 (4), 451–460, 2012
72012
Anisotropic mesh adaptation for variational problems using error estimation based on hierarchical bases
W Huang, L Kamenski, X Li
Canadian Applied Mathematics Quarterly 17 (3), 501–522, 2010
62010
Stability of explicit Runge-Kutta methods for high order finite element approximation of linear parabolic equations
W Huang, L Kamenski, J Lang
Numerical Mathematics and Advanced Applications—ENUMATH 2013. LNCSE 103 …, 2015
52015
Sharp Bounds on the Smallest Eigenvalue of Finite Element Equations with Arbitrary Meshes without Regularity Assumptions
L Kamenski
SIAM Journal on Numerical Analysis 59 (2), 983-997, 2021
22021
Adaptive finite elements with anisotropic meshes
W Huang, L Kamenski, J Lang
Numerical Mathematics and Advanced Applications 2011, 33–42, 2013
22013
The system can't perform the operation now. Try again later.
Articles 1–20