Følg
Sigurd Løkse
Sigurd Løkse
Research Scientist at NORCE Norwegian Research Centre
Verifisert e-postadresse på norceresearch.no
Tittel
Sitert av
Sitert av
År
Reservoir computing approaches for representation and classification of multivariate time series
FM Bianchi, S Scardapane, S Løkse, R Jenssen
IEEE transactions on neural networks and learning systems 32 (5), 2169-2179, 2020
1592020
Reconsidering representation alignment for multi-view clustering
DJ Trosten, S Lokse, R Jenssen, M Kampffmeyer
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
1042021
Training echo state networks with regularization through dimensionality reduction
S Løkse, FM Bianchi, R Jenssen
Cognitive Computation 9, 364-378, 2017
722017
Deep divergence-based approach to clustering
M Kampffmeyer, S Løkse, FM Bianchi, L Livi, AB Salberg, R Jenssen
Neural Networks 113, 91-101, 2019
602019
Robust clustering using a kNN mode seeking ensemble
JN Myhre, KØ Mikalsen, S Løkse, R Jenssen
Pattern Recognition 76, 491-505, 2018
532018
Bidirectional deep-readout echo state networks
FM Bianchi, S Scardapane, S Løkse, R Jenssen
arXiv preprint arXiv:1711.06509, 2017
412017
Sen: A novel feature normalization dissimilarity measure for prototypical few-shot learning networks
VN Nguyen, S Løkse, K Wickstrøm, M Kampffmeyer, D Roverso, ...
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
372020
Information plane analysis of deep neural networks via matrix-based Renyi's entropy and tensor kernels
K Wickstrøm, S Løkse, M Kampffmeyer, S Yu, J Principe, R Jenssen
arXiv preprint arXiv:1909.11396, 2019
332019
Deep kernelized autoencoders
M Kampffmeyer, S Løkse, FM Bianchi, R Jenssen, L Livi
Image Analysis: 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway …, 2017
232017
The deep kernelized autoencoder
M Kampffmeyer, S Løkse, FM Bianchi, R Jenssen, L Livi
Applied Soft Computing 71, 816-825, 2018
192018
On the effects of self-supervision and contrastive alignment in deep multi-view clustering
DJ Trosten, S Løkse, R Jenssen, MC Kampffmeyer
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
132023
Spectral Clustering Using PCKID – A Probabilistic Cluster Kernel for Incomplete Data
S Løkse, FM Bianchi, AB Salberg, R Jenssen
Image Analysis: 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway …, 2017
92017
Information plane analysis of deep neural networks via matrix-based Renyi’s entropy and tensor kernels. arXiv 2019
K Wickstrøm, S Løkse, M Kampffmeyer, S Yu, J Principe, R Jenssen
arXiv preprint arXiv:1909.11396, 0
8
Hubs and hyperspheres: Reducing hubness and improving transductive few-shot learning with hyperspherical embeddings
DJ Trosten, R Chakraborty, S Løkse, KK Wickstrøm, R Jenssen, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
62023
Relax: Representation learning explainability
KK Wickstrøm, DJ Trosten, S Løkse, A Boubekki, KØ Mikalsen, ...
arXiv preprint arXiv:2112.10161, 2021
62021
Consensus clustering using knn mode seeking
JN Myhre, KØ Mikalsen, S Løkse, R Jenssen
Image Analysis: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark …, 2015
62015
The Conditional Cauchy-Schwarz Divergence with Applications to Time-Series Data and Sequential Decision Making
S Yu, H Li, S Løkse, R Jenssen, JC Príncipe
arXiv preprint arXiv:2301.08970, 2023
32023
The Kernelized Taylor Diagram
K Wickstrøm, JE Johnson, S Løkse, G Camps-Valls, KØ Mikalsen, ...
Symposium of the Norwegian AI Society, 125-131, 2022
22022
Leveraging tensor kernels to reduce objective function mismatch in deep clustering
DJ Trosten, S Løkse, R Jenssen, M Kampffmeyer
Pattern Recognition 149, 110229, 2024
12024
On the Role of Self-supervision in Deep Multi-view Clustering
DJ Trosten, S Løkse, R Jenssen, M Kampffmeyer
12022
Systemet kan ikke utføre handlingen. Prøv på nytt senere.
Artikler 1–20