Follow
Gard Spreemann
Gard Spreemann
Unknown affiliation
Verified email at nonempty.org
Title
Cited by
Cited by
Year
Simplicial Neural Networks
S Ebli, M Defferrard, G Spreemann
arXiv preprint arXiv:2010.03633, 2020
1162020
Approximating persistent homology in Euclidean space through collapses
MB Botnan, G Spreemann
Applicable Algebra in Engineering, Communication and Computing 26 (1-2), 73-101, 2015
472015
Topological exploration of artificial neuronal network dynamics
JB Bardin, G Spreemann, K Hess
Network Neuroscience 3 (3), 725-743, 2019
262019
A Notion of Harmonic Clustering in Simplicial Complexes
S Ebli, G Spreemann
2019 18th IEEE International Conference On Machine Learning And Applications …, 2019
182019
Dynamics of CLIMP-63 S-acylation control ER morphology
PA Sandoz, RA Denhardt-Eriksson, L Abrami, LA Abriata, G Spreemann, ...
Nature Communications 14 (1), 264, 2023
16*2023
Same but different: Distance correlations between topological summaries
K Turner, G Spreemann
Topological Data Analysis: The Abel Symposium 2018, 459-490, 2020
162020
Using persistent homology to reveal hidden information in neural data
G Spreemann, B Dunn, MB Botnan, NA Baas
arXiv preprint arXiv:1510.06629, 2015
142015
Using persistent homology to reveal hidden covariates in systems governed by the kinetic Ising model
G Spreemann, B Dunn, MB Botnan, NA Baas
Physical Review E 97 (3), 032313, 2018
112018
Intact Drosophila central nervous system cellular quantitation reveals sexual dimorphism
W Jiao, G Spreemann, E Ruchti, S Banerjee, S Vernon, Y Shi, RS Stowers, ...
Elife 11, e74968, 2022
42022
Topology of Learning in Artificial Neural Networks
M Gabella, N Afambo, S Ebli, G Spreemann
arXiv preprint arXiv:1902.08160, 2019
2*2019
FORLORN: A Framework for Comparing Offline Methods and Reinforcement Learning for Optimization of RAN Parameters
V Edvardsen, G Spreemann, JV Abeele
arXiv preprint arXiv:2209.13540, 2022
12022
The system can't perform the operation now. Try again later.
Articles 1–11