Gpt-4 technical report J Achiam, S Adler, S Agarwal, L Ahmad, I Akkaya, FL Aleman, D Almeida, ... arXiv preprint arXiv:2303.08774, 2023 | 7256* | 2023 |
Go-explore: a new approach for hard-exploration problems A Ecoffet, J Huizinga, J Lehman, KO Stanley, J Clune arXiv preprint arXiv:1901.10995, 2019 | 452 | 2019 |
First return, then explore A Ecoffet, J Huizinga, J Lehman, KO Stanley, J Clune Nature 590 (7847), 580-586, 2021 | 406 | 2021 |
Video pretraining (vpt): Learning to act by watching unlabeled online videos B Baker, I Akkaya, P Zhokov, J Huizinga, J Tang, A Ecoffet, B Houghton, ... Advances in Neural Information Processing Systems 35, 24639-24654, 2022 | 269 | 2022 |
The evolutionary origins of hierarchy H Mengistu, J Huizinga, JB Mouret, J Clune PLoS computational biology 12 (6), e1004829, 2016 | 151 | 2016 |
Scaling map-elites to deep neuroevolution C Colas, V Madhavan, J Huizinga, J Clune Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 67-75, 2020 | 100 | 2020 |
Evolving neural networks that are both modular and regular: Hyperneat plus the connection cost technique J Huizinga, J Clune, JB Mouret Proceedings of the 2014 annual conference on genetic and evolutionary …, 2014 | 64 | 2014 |
Exploration based language learning for text-based games A Madotto, M Namazifar, J Huizinga, P Molino, A Ecoffet, H Zheng, ... arXiv preprint arXiv:2001.08868, 2020 | 33 | 2020 |
Does aligning phenotypic and genotypic modularity improve the evolution of neural networks? J Huizinga, JB Mouret, J Clune Proceedings of the Genetic and Evolutionary Computation Conference 2016, 125-132, 2016 | 29 | 2016 |
Evolving multimodal robot behavior via many stepping stones with the combinatorial multiobjective evolutionary algorithm J Huizinga, J Clune Evolutionary computation 30 (2), 131-164, 2022 | 28 | 2022 |
The emergence of canalization and evolvability in an open-ended, interactive evolutionary system J Huizinga, KO Stanley, J Clune Artificial life 24 (3), 157-181, 2018 | 28 | 2018 |
Variation in reversal learning by three generalist mesocarnivores LA Stanton, ES Bridge, J Huizinga, SR Johnson, JK Young, ... Animal Cognition 24 (3), 555-568, 2021 | 21 | 2021 |
Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft I Kanitscheider, J Huizinga, D Farhi, WH Guss, B Houghton, R Sampedro, ... arXiv preprint arXiv:2106.14876, 2021 | 20 | 2021 |
Gpt-4o system card A Hurst, A Lerer, AP Goucher, A Perelman, A Ramesh, A Clark, AJ Ostrow, ... arXiv preprint arXiv:2410.21276, 2024 | 19 | 2024 |
Montezuma’s revenge solved by go-explore, a new algorithm for hard-exploration problems (sets records on pitfall, too) A Ecoffet, J Huizinga, J Lehman, KO Stanley, J Clune Uber Engineering Blog, 2018 | 15 | 2018 |
Environmental, individual and social traits of free-ranging raccoons influence performance in cognitive testing LA Stanton, ES Bridge, J Huizinga, S Benson-Amram Journal of Experimental Biology 225 (18), jeb243726, 2022 | 13 | 2022 |
Guiding neuroevolution with structural objectives KO Ellefsen, J Huizinga, J Torresen Evolutionary Computation 28 (1), 115-140, 2020 | 11 | 2020 |
Commonsense and Semantic-Guided Navigation through Language in Embodied Environment. D Yu, C Khatri, A Papangelis, A Madotto, M Namazifar, J Huizinga, ... ViGIL@ NeurIPS, 2019 | 4 | 2019 |
The Evolutionary Origins of Hierarchy J Clune, JB Mouret, H Lipson PLOS Computational Biology 280 (20122863), 2016, 1755 | 2 | 1755 |
Deep reinforcement learning based models for hard-exploration problems JM Clune, AL Ecoffet, KO Stanley, J Huizinga, JA Lehman US Patent 11,829,870, 2023 | 1 | 2023 |