Explainable subgraph reasoning for forecasting on temporal knowledge graphs Z Han, P Chen, Y Ma, V Tresp International conference on learning representations, 2020 | 218* | 2020 |
Timetraveler: Reinforcement learning for temporal knowledge graph forecasting H Sun, J Zhong, Y Ma, Z Han, K He arXiv preprint arXiv:2109.04101, 2021 | 164 | 2021 |
Learning neural ordinary equations for forecasting future links on temporal knowledge graphs Z Han, Z Ding, Y Ma, Y Gu, V Tresp Proceedings of the 2021 conference on empirical methods in natural language …, 2021 | 143* | 2021 |
Tlogic: Temporal logical rules for explainable link forecasting on temporal knowledge graphs Y Liu, Y Ma, M Hildebrandt, M Joblin, V Tresp Proceedings of the AAAI conference on artificial intelligence 36 (4), 4120-4127, 2022 | 133 | 2022 |
Embedding models for episodic knowledge graphs Y Ma, V Tresp, EA Daxberger Journal of Web Semantics 59, 100490, 2019 | 119 | 2019 |
Graph hawkes neural network for forecasting on temporal knowledge graphs Z Han, Y Ma, Y Wang, S Günnemann, V Tresp arXiv preprint arXiv:2003.13432, 2020 | 118* | 2020 |
Dyernie: Dynamic evolution of riemannian manifold embeddings for temporal knowledge graph completion Z Han, Y Ma, P Chen, V Tresp arXiv preprint arXiv:2011.03984, 2020 | 96 | 2020 |
Contrastive learning for recommender system Z Liu, Y Ma, Y Ouyang, Z Xiong arXiv preprint arXiv:2101.01317, 2021 | 82 | 2021 |
Improving visual relationship detection using semantic modeling of scene descriptions S Baier, Y Ma, V Tresp The Semantic Web–ISWC 2017: 16th International Semantic Web Conference …, 2017 | 79 | 2017 |
Reasoning on knowledge graphs with debate dynamics M Hildebrandt, JAQ Serna, Y Ma, M Ringsquandl, M Joblin, V Tresp Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 4123-4131, 2020 | 60 | 2020 |
Causal inference under networked interference and intervention policy enhancement Y Ma, V Tresp International Conference on Artificial Intelligence and Statistics, 3700-3708, 2021 | 51* | 2021 |
Km-bart: Knowledge enhanced multimodal bart for visual commonsense generation Y Xing, Z Shi, Z Meng, G Lakemeyer, Y Ma, R Wattenhofer arXiv preprint arXiv:2101.00419, 2021 | 50 | 2021 |
3d-retr: End-to-end single and multi-view 3d reconstruction with transformers Z Shi, Z Meng, Y Xing, Y Ma, R Wattenhofer arXiv preprint arXiv:2110.08861, 2021 | 42 | 2021 |
Multi-modal contrastive pre-training for recommendation Z Liu, Y Ma, M Schubert, Y Ouyang, Z Xiong Proceedings of the 2022 International Conference on Multimedia Retrieval, 99-108, 2022 | 27 | 2022 |
Embedding learning for declarative memories V Tresp, Y Ma, S Baier, Y Yang The Semantic Web: 14th International Conference, ESWC 2017, Portorož …, 2017 | 26 | 2017 |
GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models R Liao, X Jia, Y Li, Y Ma, V Tresp Findings of the Association for Computational Linguistics: NAACL 2024, 4303-4317, 2024 | 23* | 2024 |
Holistic Representations for Memorization and Inference. Y Ma, M Hildebrandt, V Tresp, S Baier UAI, 403-413, 2018 | 22 | 2018 |
A simple but powerful graph encoder for temporal knowledge graph completion Z Ding, Y Ma, B He, J Wu, Z Han, V Tresp Intelligent Systems Conference, 729-747, 2023 | 21 | 2023 |
Time-dependent entity embedding is not all you need: A re-evaluation of temporal knowledge graph completion models under a unified framework Z Han, G Zhang, Y Ma, V Tresp Proceedings of the 2021 Conference on Empirical Methods in Natural Language …, 2021 | 21 | 2021 |
Few-shot inductive learning on temporal knowledge graphs using concept-aware information Z Ding, J Wu, B He, Y Ma, Z Han, V Tresp arXiv preprint arXiv:2211.08169, 2022 | 20 | 2022 |