Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view H Holden, X Raynaud Communications in Partial Differential Equations 32 (10), 1511-1549, 2007 | 199 | 2007 |

MRST-AD–an open-source framework for rapid prototyping and evaluation of reservoir simulation problems S Krogstad, KA Lie, O Møyner, HM Nilsen, X Raynaud, B Skaflestad SPE reservoir simulation symposium, 2015 | 123 | 2015 |

Dissipative solutions for the Camassa-Holm equation H Holden, X Raynaud Discrete Contin. Dyn. Syst 24 (4), 1047-1112, 2009 | 120 | 2009 |

A convergent numerical scheme for the Camassa--Holm equation based on multipeakons H Holden, X Raynaud Discrete & Continuous Dynamical Systems-A 14 (3), 505, 2006 | 84 | 2006 |

Multi-symplectic integration of the Camassa–Holm equation D Cohen, B Owren, X Raynaud Journal of Computational Physics 227 (11), 5492-5512, 2008 | 83 | 2008 |

Global conservative multipeakon solutions of the Camassa–Holm equation H Holden, X Raynaud Journal of Hyperbolic Differential Equations 4 (01), 39-64, 2007 | 59 | 2007 |

Convergence of a finite difference scheme for the Camassa–Holm equation H Holden, X Raynaud SIAM journal on numerical analysis 44 (4), 1655-1680, 2006 | 54 | 2006 |

Periodic conservative solutions of the Camassa–Holm equation H Holden, X Raynaud Annales de l'institut Fourier 58 (3), 945-988, 2008 | 53 | 2008 |

Global conservative solutions of the generalized hyperelastic-rod wave equation H Holden, X Raynaud Journal of Differential Equations 233 (2), 448-484, 2007 | 53 | 2007 |

Global solutions for the two-component Camassa–Holm system K Grunert, H Holden, X Raynaud Communications in Partial Differential Equations 37 (12), 2245-2271, 2012 | 51 | 2012 |

Lipschitz metric for the Hunter–Saxton equation A Bressan, H Holden, X Raynaud Journal de mathématiques pures et appliquées 94 (1), 68-92, 2010 | 41 | 2010 |

Global semigroup of conservative solutions of the nonlinear variational wave equation H Holden, X Raynaud Archive for rational mechanics and analysis 201 (3), 871-964, 2011 | 39 | 2011 |

Lipschitz metric for the periodic Camassa–Holm equation K Grunert, H Holden, X Raynaud Journal of Differential Equations 250 (3), 1460-1492, 2011 | 34 | 2011 |

Fast simulation of polymer injection in heavy-oil reservoirs on the basis of topological sorting and sequential splitting KA Lie, HM Nilsen, AF Rasmussen, X Raynaud SPE Journal 19 (06), 991-1,004, 2014 | 33 | 2014 |

Lipschitz metric for the Camassa-Holm equation on the line K Grunert, H Holden, X Raynaud arXiv preprint arXiv:1010.0561, 2010 | 33 | 2010 |

Global dissipative multipeakon solutions of the Camassa–Holm equation H Holden, X Raynaud Communications in Partial Differential Equations 33 (11), 2040-2063, 2008 | 32 | 2008 |

Convergence of a spectral projection of the Camassa‐Holm equation H Kalisch, X Raynaud Numerical Methods for Partial Differential Equations: An International …, 2006 | 30 | 2006 |

Symmetric waves are traveling waves M Ehrnström, H Holden, X Raynaud International Mathematics Research Notices 2009 (24), 4578-4596, 2009 | 27 | 2009 |

Virtual element method for geomechanical simulations of reservoir models O Andersen, HM Nilsen, X Raynaud Computational Geosciences 21 (5-6), 877-893, 2017 | 25 | 2017 |

A continuous interpolation between conservative and dissipative solutions for the two-component Camassa–Holm system K Grunert, H Holden, X Raynaud Forum of Mathematics, Sigma 3, 2015 | 25 | 2015 |